68 research outputs found

    Investigation of the effects of atmospheric pressure cold plasma on human cells and tissues

    Get PDF
    Atmospheric pressure cold plasma (APCP) is a novel tool in medicine for tissue disinfection. We recently reported that 2 minutes of APCP generated by a new portable device that ionizes a flow of helium gas exerted an antimicrobial effect, mainly due to the action of reactive oxygen species (ROS) (P. Brun et al., 2012). Since ROS induced DNA lesions that could lead to point mutations, before using plasma in medical treatment it is important to ascertain the safe usage of this device. In the study presented, we analysed the presence of ROS levels, pre-mutagenic 8-oxodeoxyguanosine (8-OHdG) and the expression of OGG1, a DNA glycosylase specific for the removal of 8-OHdG lesions in cell (fibroblasts and keratocytes) cultures. ROS levels in APCP-exposed microorganisms and keratocytes were detected by 2’,7’-dichlorofluorescein diacetate (HDCF-DA) fluorescence; the potential genotoxic effects of plasma were evaluated by analyses of cell cycle distribution, externalization of phosphatidylserine, HPLC determination of 8-OHdG expression, qRT-PCR and Western blotting of OGG1 gene and protein, at set time intervals. Our results demonstrated that APCP induced ROS formation in exposed human cells, a transient 8-OHdG expression and a consequent adaptative OGG1 response at the transcriptional and translational level. In conclusion, the short application of APCP to cells and tissues has a disinfection effect and leads to time-restricted ROS generation and to oxidative-stress related responses

    Latin Americans and Caribbeans in Europe. A cross-country analysis

    Get PDF
    With the beginning of the 21st century, there has been an acceleration of migratory flows from Latin America and the Caribbean (LAC) to Europe. As a result, and despite the negative impact of the economic crisis, 4.6 million Latin American and Caribbean immigrants reside in Europe, half of them in Spain. This article analyses the recent evolution of these migratory flows, their territorial distribution, and their demographic profiles according to the 2011 European census data disseminated by a new tool -the Census Hub- implemented by the European Statistical System. The analysis shows the existence of a high LAC immigrant concentration in Spain and in certain European cities, a marked young and feminized demographic profile, a great variety of educational levels and a different insertion in each European labour market, although many LAC immigrants work in low-skill occupations, being overqualified and underemployed in most of the countries

    Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound speckle tracking from grey scale images allows the assessment of regional strain derived from 2D regardless of angle intonation, and it is highly reproducible. The study aimed to evaluate regional left ventricular functional reserve in elite soccer players.</p> <p>Methods</p> <p>50 subjects (25 elite athletes and 25 sedentary controls), aged 26 ± 3.5, were submitted to an echo exam, at rest and after the Hand Grip (HG) test. Both standard echo parameters and strain were evaluated.</p> <p>Results</p> <p>Ejection fraction was similar in athletes and controls both at rest (athletes 58 ± 2 vs controls 57 ± 4 p ns) and after HG (athletes 60 ± 2 vs controls 58 ± 3 p ns). Basal (septal and anterior) segments showed similar strain values in athletes and controls both at rest (athletes S% -19.9 ± 4.2; controls S% -18.8 ± 4.9 p = ns) and after HG (athletes S% -20.99 ± 2.8; controls S% -19.46 ± 4.4 p = ns). Medium-apical segments showed similar strain values at rest (athletes S% -17.31 ± 2.3; controls S% -20.00 ± 5.3 p = ns), but higher values in athletes after HG (athletes S% -24.47 ± 2.8; controls S% -20.47 ± 5.4 p < 0.05)</p> <p>Conclusion</p> <p>In athletes with physiological myocardial hypertrophy, a brief isometric effort produces enhancement of the strain in medium-apical left ventricular segments, suggesting the presence of a higher regional function reserve which can be elicited with an inotropic challenge and suitable methods of radial function quantification such as 2D-derived strain.</p

    Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    Get PDF
    Background: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology and Principal Findings: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2) was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses
    • 

    corecore